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Motivating Examples: RF tomographic tracking1

1Li et al., “Sequential Monte Carlo radio-frequency tomographic tracking”, ICASSP, 2011.
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More complex scenario: autonomous driving2

!?

#

Environment

Observation

Agent

Radar, Lidar, GPS, Camera measurements

Multiple sensors Multiple targets

2Redmon and Farhadi, “YOLO9000: better, faster, stronger”, CVPR, 2017.
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Filtering problem formulation

Recursive Bayesian Filtering : when the state and observation are
sequence data.

▶ Dynamic model pθ(st|st−1): transition of hidden state.

▶ Measurements model pθ(ot|st): likelihood of the observation
given the state.

▶ Goal: sequentially obtain marginal posterior pθ(st|o0:t) or joint
posterior pθ(s1:t|o0:t).
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Filtering (non-linear models)

Particle filters:
sequential approximation of marginal posterior pθ(st|o1:t) or joint
posterior pθ(s1:t|o1:t) with particles i.e. weighted samples.
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(Bootstrap) Particle Filters3 in one slide

▶ Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:
Weighted samples to sequentially approximate target distribution.

3Gordon et al.,“Novel approach to nonlinear/non-Gaussian Bayesian state estimation”, in IEE Proc. FRSP, 1993 6 / 38
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Particle filters: more generally
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Parameter estimation for particle filtering

▶ Components of particle filters are usually parametrised by
some parameter θ.

▶ Can we learn these parameters from data?
▶ Maximum likelihood (ML) estimation4

▶ Bayesian estimation5

4Kantas et al., “An overview of sequential Monte Carlo methods for parameter estimation in general state-space
models”, IFAC, 2009

5Kantas et al., “On particle methods for parameter estimation in state-space models”, Statistical Science, 2015
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Parameter estimation for particle filtering

▶ Components of particle filters are usually parametrised by
some parameter θ.

▶ Can we learn these parameters from data?
▶ Maximum likelihood (ML) estimation4

▶ Bayesian estimation5

Can be effective, but ...

▶ Assume that the structures or part of parameters of the dynamic
and measurement models are known.

4Kantas et al., “An overview of sequential Monte Carlo methods for parameter estimation in general state-space
models”, IFAC, 2009

5Kantas et al., “On particle methods for parameter estimation in state-space models”, Statistical Science, 2015
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Real-world scenarios?

High-dimensional unstructured observations, e.g. images6.

6Geiger et al., “Are we ready for autonomous driving? The KITTI vision benchmark suite”, CVPR, 2012
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High-dimensional unstructured observations, e.g. images6.

Designing particle filters can be complicated in complex environments:

▶ Dynamic model — How does the hidden state evolve?

1. Which distribution family to use?
2. How to optimise distribution parameters?
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Real-world scenarios?

High-dimensional unstructured observations, e.g. images6.

Designing particle filters can be complicated in complex environments:

▶ Dynamic model — How does the hidden state evolve?

1. Which distribution family to use?
2. How to optimise distribution parameters?

▶ Measurement model — How to model the relationship between
observations and hidden states?

▶ Proposal distribution — How to use information from
observations to construct good proposal distributions?

6Geiger et al., “Are we ready for autonomous driving? The KITTI vision benchmark suite”, CVPR, 2012
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Basic idea of differentiable particle filters7

Combining particle filters with deep learning tools: Differentiable
particle filters (DPFs).

▶ Build components of particle filters with neural networks.

▶ Optimise these components by gradient descent.

Components of differentiable particle filters:

▶ Dynamic model

▶ Measurement model

▶ Proposal distribution

 can be built with neural networks

▶ Differentiable resampling

▶ Loss function & gradient descent.

7Jonschkowski et al., “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
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What does differentiable mean?

Differentiable particle filters:

▶ All components need to be differentiable.

Gradient descent.

11 / 38



What does differentiable mean?

Differentiable particle filters:

▶ All components need to be differentiable.

▶ Parametrise differentiable components with θ (model parameters)
and ϕ (proposal parameters).

Gradient descent.

11 / 38



What does differentiable mean?

Differentiable particle filters:

▶ All components need to be differentiable.

▶ Parametrise differentiable components with θ (model parameters)
and ϕ (proposal parameters).

▶ Optimise by gradient descent with a loss function L:

θ → θ −∇θL ,
ϕ→ ϕ−∇ϕL .

Gradient descent.
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Differentiable particle filters: dynamic model

Reparameterisation trick.

▶ Adding noise to deterministic functions, e.g. neural networks.

sit = Fθ(s
i
t−1) + ϵit ∼ p(st|sit−1)
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Differentiable particle filters: measurement models

Model the likelihood of observations given states with
parametrised functions Lθ(·):
▶ Compare feature vectors of observations and states given by

neural networks.

lit = p(ot|sit) = Lθ(ot, s
i
t), wi

t = litw
i
t−1

7Jonschkowski et al., “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
8Karkus et al., “Particle Filter Networks with Application to Visual localisation”, CoRL, 2018.
9Wen et al., “End-To-End Semi-supervised Learning for Differentiable Particle Filters”, ICRA, 2021.

13 / 38



Differentiable resampling
The standard multinomial resampling step is non-differentiable.

▶ Small changes in weights lead to discrete changes in output.

Different approaches, e.g.:

1. Soft resampling8 (not really differentiable).
▶ Resample with new weights ˙̃wi

t = λw̃i
t + (1− λ) 1

N .
▶ Non-zero gradients:

ˆ̃wi
t =

w̃i
t

˙̃wi
t

=
w̃i

t

λw̃i
t + (1− λ)1/N

.

8Karkus et al., “Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
10Corenflos et al., “Differentiable Particle Filtering via Entropy-regularized Optimal Transport.” ICML, 2021.
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Different approaches, e.g.:

1. Soft resampling8 (not really differentiable).
▶ Resample with new weights ˙̃wi

t = λw̃i
t + (1− λ) 1

N .
▶ Non-zero gradients:

ˆ̃wi
t =

w̃i
t

˙̃wi
t

=
w̃i

t

λw̃i
t + (1− λ)1/N

.

2. Entropy-regularised optimal transport resampling10.
▶ No multinomial resampling.
▶ Consider the resampling step as an optimal transport problem.
▶ Solve an entropy regularised OT problem via Sinkhorn iterations.
▶ Resampled particles { 1

N , s̃
i
t} do not from ancestors.

8Karkus et al., “Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
10Corenflos et al., “Differentiable Particle Filtering via Entropy-regularized Optimal Transport.” ICML, 2021.
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Differentiable Particle Filters: Training Objective

End-to-End learning by minimizing a given loss function:

1. Supervised losses (require ground-truth latent states)7,8.
▶ The mean squared error (MSE):

LMSE(θ) =
∑T

t=0(s
∗
t − st)

T (s∗t − st) ,

▶ The negative log likelihood (NLL):

LNLL(θ) = −
∑T

t=0 log
∑N

i=1
wi

t√
|Σ|

exp(− 1
2 (s

∗
t − st)

TΣ−1(s∗t − st)) ,

where s∗t is the ground truth state, st is the estimated state.

7Jonschkowski et al., “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
8Karkus et al., “Particle Filter Networks with Application to Visual localisation”, CoRL, 2018.
9Hao et al., ”End-To-End Semi-supervised Learning for Differentiable Particle Filters”, ICRA, 2021.

11Le et al., “Auto-Encoding Sequential Monte Carlo”, ICLR, 2018.
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Differentiable Particle Filters: Training Objective

End-to-End learning by minimizing a given loss function:

1. Supervised losses (require ground-truth latent states)7,8.
▶ The mean squared error (MSE):

LMSE(θ) =
∑T

t=0(s
∗
t − st)

T (s∗t − st) ,

▶ The negative log likelihood (NLL):

LNLL(θ) = −
∑T

t=0 log
∑N

i=1
wi

t√
|Σ|

exp(− 1
2 (s

∗
t − st)

TΣ−1(s∗t − st)) ,

where s∗t is the ground truth state, st is the estimated state.

2. Observation likelihood-based loss.
▶ Pseudo-likelihood9.
▶ Evidence Lower Bound (ELBO)11.

7Jonschkowski et al., “Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
8Karkus et al., “Particle Filter Networks with Application to Visual localisation”, CoRL, 2018.
9Hao et al., ”End-To-End Semi-supervised Learning for Differentiable Particle Filters”, ICRA, 2021.

11Le et al., “Auto-Encoding Sequential Monte Carlo”, ICLR, 2018.
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Limitations in existing variants

▶ Only able to generate Gaussian prior.

▶ Bootstrap particle filtering framework or proposal distributions
that only use latest observations while ignore states.

▶ Measurement models are either Gaussian or do not admit valid
probability densities.
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Xiongjie Chen and Yunpeng Li, “Normalising flow-based
differentiable particle filters”, arXiv:2403.01499, March 2024.
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Normalising Flows
Definition of normalising flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.

12Rezende et al., ”Variational Inference with Normalizing Flows”, ICML, 2015.
13Dinh et al., ”Density Estimation using Real NVP” ICLR, 2017.
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Normalising Flows
Definition of normalising flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.

Why invertible transformations?

▶ Invertibility allows density estimation (change of variable):

p(y) = p(x)

∣∣∣∣detdTθ(x)dx

∣∣∣∣−1

.

12Rezende et al., ”Variational Inference with Normalizing Flows”, ICML, 2015.
13Dinh et al., ”Density Estimation using Real NVP” ICLR, 2017.
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Normalising Flows
Definition of normalising flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.

How about conditional probability densities?

▶ Given a condition u, we can build conditional normalising flows:

y = Gθ(x;u) .

Conditional probability of y given u:

p(y|u) = p(x)

∣∣∣∣detdGθ(x;u)

dx

∣∣∣∣−1

12Rezende et al., ”Variational Inference with Normalizing Flows”, ICML, 2015.
13Dinh et al., ”Density Estimation using Real NVP” ICLR, 2017.
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Examples of Normalising Flows: Coupling Layer
Real-NVP13

▶ Coupling layers.

13Ding et al., “Density Estimation Using Real NVP”, ICLR, 2017.
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Examples of Normalising Flows: Coupling Layer
Real-NVP13

▶ Coupling layers.

The special structure of coupling layers leads to triangular Jacobian
matrix:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d

)) + t( x
1:d

)

∂y

∂x
=

[
I 0

∂yd+1:D

∂xT
1:d

diag(exp[c(x1:d)])

]

13Ding et al., “Density Estimation Using Real NVP”, ICLR, 2017.
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Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

Standard coupling layer
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Conditional Coupling Layer14

▶ Conditional coupling layer:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d
, o)) + t( x

1:d
, o)

▶ Standard coupling layer:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d

)) + t( x
1:d

)

14Winkler et al., “Learning Likelihoods with Conditional Normalizing Flows”, arXiv, 2019.
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Conditional Coupling Layer14

▶ Conditional coupling layer:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d
, o)) + t( x

1:d
, o)

Still invertible and lead to triangular Jacobian matrix:

∂y

∂x
=

[
I 0

∂yd+1:D

∂x1:d
diag(exp[c(x1:d, o)])

]

14Winkler et al., “Learning Likelihoods with Conditional Normalizing Flows”, arXiv, 2019.
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NF-DPFs: Dynamic Model and Proposal15

Normalising flow-based differentiable particle filters (NF-DPFs).

1. Dynamic normalising flow Tθ(·) : X → X : construct flexible
dynamic models.

15Chen et al., “Differentiable particle filters through conditional normalising flow,” FUSION, 2021.
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NF-DPFs: Dynamic Model and Proposal15

Normalising flow-based differentiable particle filters (NF-DPFs).

1. Dynamic normalising flow Tθ(·) : X → X : construct flexible
dynamic models.

2. Conditional normalising flow Gϕ(·) : X × Y → X : move particles
to areas closer to posterior by utilising information from
observations.

15Chen et al., “Differentiable particle filters through conditional normalising flow,” FUSION, 2021.
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NF-DPFs: Measurement Model16

Existing measurement models

16Chen and Li, “Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow,”
EUSIPCO, 2022.
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NF-DPFs: Measurement Model16

Existing measurement models Proposed measurement model

1. Valid probability densities p(ot|st) = p(zt)

∣∣∣∣detdḠθ(ot;st)
dot

∣∣∣∣ with
Ḡθ(·) : X × Y → Y.

16Chen and Li, “Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow,”
EUSIPCO, 2022.
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NF-DPFs: Measurement Model16

Existing measurement models Proposed measurement model

1. Valid probability densities p(ot|st) = p(zt)

∣∣∣∣detdḠθ(ot;st)
dot

∣∣∣∣ with
Ḡθ(·) : X × Y → Y.

2. Can be trained with likelihood-based loss functions:

log p(ot|o0:t−1) = log

∫
p(s1:t|o0:t−1)p(ot|st)ds1:t .

16Chen and Li, “Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow,”
EUSIPCO, 2022.
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Theoretical Results
How to establish convergence results for differentiable particle filters?
▶ Main difference: resamplers.

▶ multinomial → entropy-regularised optimal transport.

17Crisan and Doucet, “A Survey of Convergence Results on Particle Filtering Methods for Practitioners”, IEEE
TSP, 2002.
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Theoretical Results
How to establish convergence results for differentiable particle filters?
▶ Main difference: resamplers.

▶ multinomial → entropy-regularised optimal transport.

▶ Standard PFs using multinomial resampling17(not differentiable):

E

[(
α
(t)
N (ψ)− β(t−1)f(ψ)

)2
]
≤ ct

||ψ||2∞
N

, t ≥ 1,

E

[(
β
(t)
N (ψ)− β(t)(ψ)

)2
]
≤ c′t

||ψ||2∞
N

, t ≥ 0.

▶ α(t) := p(st|o0:t−1; θ): predictive distributions at t.

▶ α
(t)
N := 1

N

∑N
i=1 s

i
t: approximations of α(t).

▶ β(t) := p(st|o0:t; θ): posterior distributions at t.
▶ β

(t)
N :=

∑N
i=1 w̃

i
ts

i
t: approximations of β(t).

▶ f(·): a transition kernel defined by p(st|st−1; θ).

17Crisan and Doucet, “A Survey of Convergence Results on Particle Filtering Methods for Practitioners”, IEEE
TSP, 2002.
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Theoretical Results

Assumption 1: the state st ∈ X is defined on a compact set X with finite
diameter d.

Assumption 2: the optimal transport plan between α(t) and β(t) is unique
and the corresponding transport map is λ-Lipschitz.

Assumption 3: For any two probability measures µ and ρ and k-Lipschitz
function ψ(·), the transition kernel f(·) satisfy:

|µf(ψ)− ρf(ψ)| ≤ η|µ(ψ)− ρ(ψ)| .

Assumption 4: For any probability measure µ and its empirical approximation
µN , the conditional likelihood function ωt(·) satisfy:

W2(µN,ωt , µωt) ≤ ζW2(µN , µ) ,

where W2 denotes 2-Wasserstein distances, µωt
= ωtµ/µ(ωt) and

µN,ωt = ωµN/µN (ωt) are weighted probability measures.

10Corenflos et al., “Differentiable Particle Filtering via Entropy-regularized Optimal Transport.” ICML, 2021.
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Theoretical Results
▶ Standard PFs using multinomial resampling17 (not differentiable):

E

[(
α
(t)
N (ψ)− β(t−1)f(ψ)

)2
]
≤ ct

||ψ||2∞
N

, t ≥ 1,

E

[(
β
(t)
N (ψ)− β(t)(ψ)

)2
]
≤ c′t

||ψ||2∞
N

, t ≥ 0.

▶ What we derived for NF-DPFs18:

E

[(
α
(t)
N (ψ)− β(t−1)f(ψ)

)2
]
≤ ct

||ψ||2∞
N1/2dX

, t ≥ 1, (1)

E

[(
β
(t)
N (ψ)− β(t)(ψ)

)2
]
≤ c′t

||ψ||2∞
N1/2dX

, t ≥ 0. (2)

17Crisan and Doucet, “A Survey of Convergence Results on Particle Filtering Methods for Practitioners”, IEEE
TSP, 2002.

18Chen and Li, “Normalising Flow-based Differentiable Particle Filters”, preprint, arXiv, 2403.01499, 2024.
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Numerical experiments
Disk tracking experiment: localising the moving red disk19.

▶ Observation ot: an image that shows the location of disks at t.

▶ State st: the location of the red disk, st = (xt, yt).

Challenges:

▶ High-dimensional, unstructured observations.

▶ Moving distractors.
▶ The target may disappear from the observation:

▶ Occluded by distractors.
▶ Out of boundaries.

19Kloss et al., “How to Train Your Differentiable Filter”, Autonomous Robots, 2021.
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Numerical experiments
Disk localisation experiment:

▶ Dynamic model:

ât = at + ϵt, ϵt
i.i.d∼ N (0, σ2ϵ I) ,

st+1 = st + ât + αt, αt
i.i.d∼ N (0, σ2αI) .

▶ How to model the relationship between observations and states?
▶ Encode ot with neural networks: et = Eθ(ot).
▶ Estimate the conditional likelihood p(ot|st; θ) in the encoded

latent space - different methods to do this.

▶ Proposal: utilise the encoded feature et to draw samples.
▶ Loss function:

▶ RMSE between predictions and ground truth locations:

LRMSE(θ, ϕ) :=
√

1
T

∑T
t=0 ||s̄t − s∗t ||22.

▶ Autoencoder loss:
LAE(θ) =

1
T

∑T
t=0 ||Dθ(Eθ(ot))− ot||22.
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Numerical experiments
Disk localisation experiment:
▶ Evaluated methods.

▶ NF-DPF18: proposal and measurements constructed with
normalising flows.

▶ Particle filter network (PFNet)8: Boostrap, particle weights given
by a neural network with scalar output, p(ot|sit; θ) ∝ Lθ(ot, s

i
t).

▶ AESMC-Bootstrap11: Bootstrap, Gaussian measurements,
ot ∼ N (µθ(st), σθ(st)).

▶ AESMC11: Gaussian proposal and measurement,
st ∼ N (µ′

θ(st−1, ot), σ
′
θ(st−1, ot)).

▶ Particle filter recurrent neural network (PFRNN)20: new samples
and associated weights generated by RNNs, e.g. GRU and LSTM,
(sit, w

i
t) = RNN(sit−1, w

i
t−1, ot).

▶ 500/50/50 trajectories for training/validation/testing, each
trajectory has 50 time steps.

▶ 100 particles in both training and testing.
8Karkus et al., “Particle Filter Networks with Application to Visual localisation”, CoRL, 2018.

11Le et al., “Auto-Encoding Sequential Monte Carlo”, ICLR, 2018.
18Chen and Li, “Normalising Flow-based Differentiable Particle Filters”, preprint, arXiv, 2403.01499, 2024.
20Ma et al., “Particle Filter Recurrent Neural Networks”, AAAI, 2020. 29 / 38



Numerical experiments

Disk localisation experiment:
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Numerical experiments

Disk localisation experiment:

1 50 100 150
Training Epoch

3
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17

50
Va

lid
at
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n 

RM
SE

AESMC-Bootstrap
AESMC
PFRNN
PFNet
NF-DPF

Method AESMC
Bootstrap

AESMC PFRNN PFNet NF-DPF

RMSE 6.35±1.15 5.85±1.34 6.12±1.23 5.34±1.27 3.62±0.98
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Numerical experiments

Disk tracking experiment:
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Numerical experiments

Robot localisation in a maze environment:

▶ Observations given by robot cameras in a simulated environment.

▶ State st: the location and the orientation of the robot,
st = (xt, yt, ϱt).

Map of the maze:
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Numerical experiments
Robot localisation in a maze environment:

▶ Dynamic model:

st+1 =

 xt +∆xt cos (ϱt) + ∆yt sin (ϱt)
yt +∆xt sin (ϱt)−∆yt cos (ϱt)

ϱt +∆ϱt

+ ςt

▶ Similar to the disk localisation experiment:
▶ Encode observations into feature vectors to estimate p(ot|st; θ)

and construct proposal distributions.
▶ Loss function: consist of RMSE loss and autoencoder loss.

▶ More difficult than disk localisation:
▶ Uninformative observations.
▶ Need to consider the orientation of the object.

▶ 900/100/100 trajectories for training/validation/testing, each
trajectory has 100 time steps.

▶ 100 particles in both training and testing.
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Numerical experiments
Robot localisation in a maze environment:
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Numerical experiments
Robot localisation in a maze environment:
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Numerical experiments
Robot localisation in a maze environment:

▶ We tested in three different maze environments.

Maze 1 Maze 2 Maze 3

Method
AESMC
Bootstrap

AESMC PFNet PFRNN NF-DPF

Maze 1 56.5±11.5 52.1±7.5 51.4±8.7 54.1±8.9 46.1±6.9
Maze 2 115.6±6.8 109.2±11.7 120.3±8.0 125.1±8.2 103.2±10.8
Maze 3 220.6±11.1 201.3±14.7 212.1±15.3 210.5±10.8 182.2±19.9
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Summary18

▶ Introduce a normalising flow-based differentiable particle
filters that construct flexible, valid dynamic models and
proposal distributions and measurement models.

▶ The proposed method can serve as a “plug-in” module in
existing differentiable particle filter frameworks.

▶ NF-DPFs are differentiable and consistent.

18Chen and Li, “Normalising Flow-based Differentiable Particle Filters”, preprint, arXiv, 2403.01499, 2024.
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